



Some review:

1) Show that $S(x) = 2x^2 - 3x + 4$ is cont. at x = 2. To be cont. at $x = a \Rightarrow \lim_{x \to a} S(x) = S(a)$

1)
$$S(a) = 2(2)^2 - 3(2) + 4 = 2.4 - 3.2 + 4$$

= 8 - 6 + 4 = 6

a)
$$\lim_{x \to 2} S(x) = \lim_{x \to 2} [2x^2 - 3x + 4] = \dots$$

 $\lim_{x \to 2} x \to 2$
 $= 2 \left[\lim_{x \to 2} x \right]^2 - 3 \left[\lim_{x \to 2} x \right] + \lim_{x \to 2} 4$
 $= 2 \cdot 2^2 - 3 \cdot 2 + 4 = 6$

3) Since
$$\lim_{x\to 2} S(x) = S(x)$$
, then $S(x)$ is cont.

Suppose
$$S(x) = \begin{cases} \frac{x^2 - 9}{x + 3} & x \neq -3 \\ 6 & x = -3 \end{cases}$$

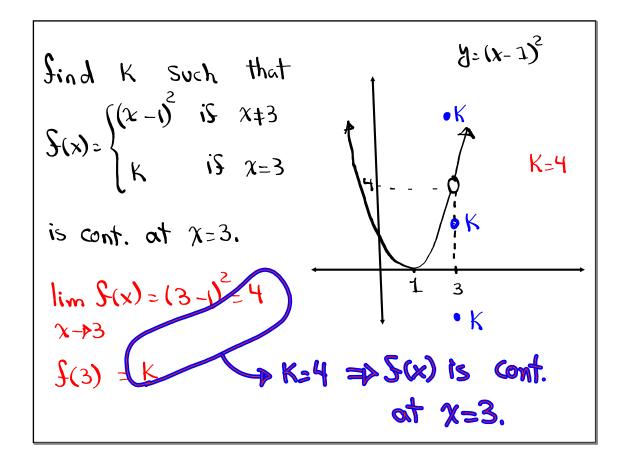
Is $S(x)$ cont. at $x = -3$?

1) $S(-3) = 6$

2) $\lim_{x \to -3} S(x) = \lim_{x \to -3} \frac{x^2 - 9}{x + 3} = 0$ I.F.

3) $\lim_{x \to -3} S(x) = \lim_{x \to -3} \frac{(x + 3)(x - 3)}{x + 3} = \lim_{x \to -3} (x - 3)$

therefore $S(x)$ is not $x = -3 - 3 = -6$
 $S(x) = \frac{x^2 - 9}{x + 3} = x - 3$ if $x \neq -3$
 $S(x) = x - 3$



Poly nomial Functions are continuous everywhere

Rational Sunctions are continuous everywhere

within the Jomain.

ex: show $S(x) = \frac{x-1}{x+2}$ is cont. at x = 0.

Rational Sunction

Domain $(-\infty, -2)U(-2, \infty)$ x = 0 is in the Jomain $\Rightarrow S(x)$ is cont.

at x = 0 $\Rightarrow S(0) = \frac{1}{2}$ $\Rightarrow S(0) = \frac{1}{2}$

Sind K such that

Sor
$$x \le 2$$
 $S(x) = \{Kx^2 : F \times x \le 2\}$
 $S(x) = \{Kx^2 : F \times x \ge 2\}$

Poly nomial Sunction

Sor $x \le 2$

Poly nomial Sunction

Sor $x \ge 2$
 $S(x) = 2x + K$

linear Sunction

Polynomial Sunction

Polynomial Sunction

Polynomial Sunction

Polynomial Sunction

Sor $x \ge 2$
 $S(x) = 2x + K$

linear Sunction

Polynomial Sunction

Sor $x \ge 2$
 $S(x) = 2x + K$
 $S(x)$

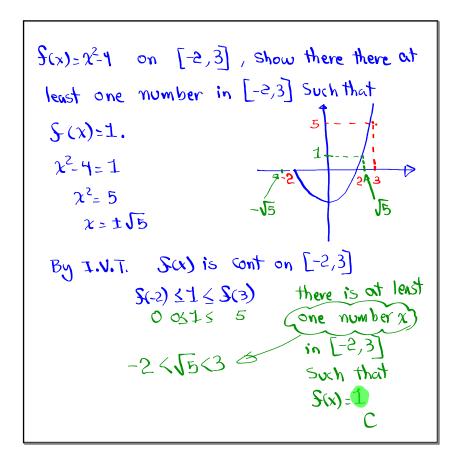
Intermediate Value Theorem:

If S(x) is continuous on [a,b], and

Cis a number between S(a) and S(b),

inclusive, then there is at least one

number x in [a,b] Such that S(x)=C. S(x)=C S(x)=C S(x)=C S(x)=C S(x)=C S(x)=C



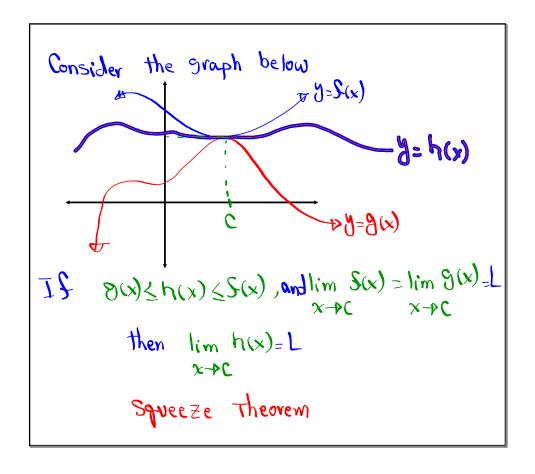
Show
$$x^3 - 4x + 1 = 0$$
 has at least one Solution in $[1,2]$. $S(x) = x^3 - 4x + 1$

Poly nomial Function

 $S(x) = x^3 - 4x + 1$

Poly nomial Function

 $S(x) = 0$
 $S(x) = 0$



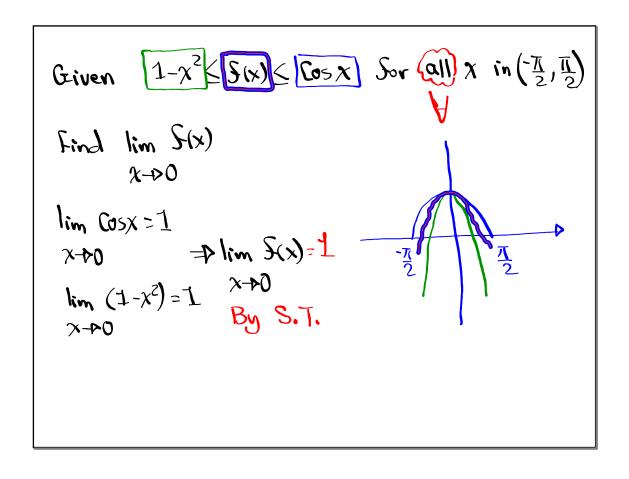
ex: Find
$$\lim_{x\to 0} x^2 \sin \frac{1}{x}$$
 $x\to 0$

Can we plug in $x=0$ to evaluate the limit?

Recall Sum trig $\Rightarrow -1 \le \sin | \le 1$

So $0 \le \sin | \le 1$

multiply by $x^2 \Rightarrow x^2 \cdot 0 \le x^2 \sin | \le x^2 \cdot 1$
 $x^2 \ge 0$
 $0 \le x^2 \sin | \le x^2$
 $\lim_{x\to 0} 0 = 0$
 $\lim_{x\to 0} x^2 = 0$



Sind
$$\lim \frac{x^3 - Kx^2}{x^2 - K^2} = \frac{K^3 - K \cdot K^2}{k^2 - K^2} = \frac{0}{0}$$
 I.F.

 $\lim \frac{x^2(x - K)}{x - K} = \lim \frac{x^2}{x + K}$
 $\lim \frac{x^2(x - K)}{x - K} = \lim \frac{x^2}{x + K}$
 $\lim \frac{x^2(x - K)}{x - K} = \lim \frac{x^2}{x + K} = \frac{K^2}{2K} = \frac{K}{2}$

Prove
$$\lim_{x\to 2} (3x-5)=1$$

1) Verisy $\lim_{x\to 2} (3x-5)=1$
 $\lim_{x\to 2} (3x-5)=3(2)-5=6-5=1$

2) Show that Sor every $8>0$, there is a $8>0$ such that

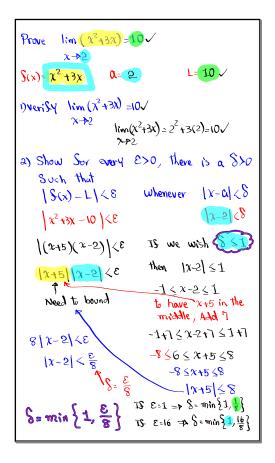
 $|S(x)-L|<8$ whenever $|x-a|<8$
 $|3x-5-1|<8$ whenever $|x-2|<8$
 $|3x-6|<8$
 $|3x-6|<8$
 $|3x-6|<8$
 $|3x-6|<8$
 $|3x-2|<8$
 $|3x-3|<8$
 $|3x-3|$

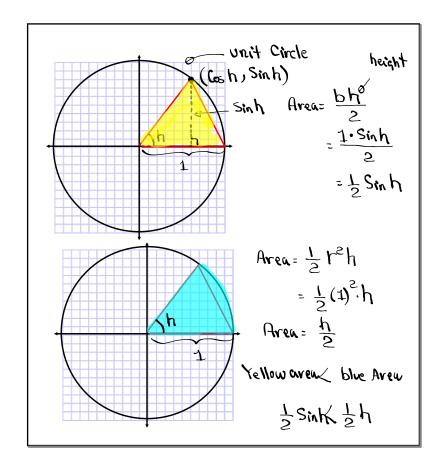
Prove
$$\lim_{x\to -2} (4-3x) = 10$$

1) VeriSy $\lim_{x\to -2} (4-3x) = 10$
 $\lim_{x\to -2} (4-3x) = 4-3(-2) = 4+6 = 10$

2) Show that Sor any $E>0$, there is a $E>0$

Such that $|E(x)-1| \le E$ whenever $|E| = 10$
 $|E| = 10$





February 16, 2022

